Computing the Regret Table for Multinomial Data
نویسندگان
چکیده
Stochastic complexity of a data set is defined as the shortest possible code length for the data obtainable by using some fixed set of models. This measure is of great theoretical and practical importance as a tool for tasks such as model selection or data clustering. In the case of multinomial data, computing the modern version of stochastic complexity, defined as the Normalized Maximum Likelihood (NML) criterion, requires computing a sum with an exponential number of terms. Furthermore, in order to apply NML in practice, one often needs to compute a whole table of these exponential sums. In our previous work, we were able to compute this table by a recursive algorithm. The purpose of this paper is to significantly improve the time complexity of this algorithm. The techniques used here are based on the discrete Fourier transform and the convolution theorem.
منابع مشابه
The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers
This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers seek to minimize their anticipated regret from their corrective actions. The model accounts for driv...
متن کاملA Fast Normalized Maximum Likelihood Algorithm for Multinomial Data
Stochastic complexity of a data set is defined as the shortest possible code length for the data obtainable by using some fixed set of models. This measure is of great theoretical and practical importance as a tool for tasks such as model selection or data clustering. In the case of multinomial data, computing the modern version of stochastic complexity, defined as the Normalized Maximum Likeli...
متن کاملAssortment Optimization under Unknown MultiNomial Logit Choice Models
Motivated by e-commerce, we study the online assortment optimization problem. The seller offers an assortment, i.e. a subset of products, to each arriving customer, who then purchases one or no product from her offered assortment. A customer’s purchase decision is governed by the underlyingMultiNomial Logit (MNL) choice model. The seller aims to maximize the total revenue in a finite sales hori...
متن کاملLearning Eigenvectors for Free
We extend the classical problem of predicting a sequence of outcomes from a finite alphabet to the matrix domain. In this extension, the alphabet of n outcomes is replaced by the set of all dyads, i.e. outer products uu> where u is a vector in R of unit length. Whereas in the classical case the goal is to learn (i.e. sequentially predict as well as) the best multinomial distribution, in the mat...
متن کاملAn Optimal Exploration-Exploitation Approach for Assortment Selection
We consider an online assortment optimization problem, where in every round, the retailer offers a Kcardinality subset (assortment) of N substitutable products to a consumer, and observes the response. We model consumer choice behavior using the widely used multinomial logit (MNL) model, and consider the retailer’s problem of dynamically learning the model parameters, while optimizing cumulativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005